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Abstract

This paper presents a simple technique for testing the hypothesis

that a hierarchical sequence of partitions constructed by the max

method could have been obtained solely on the basis of "noise." The

test procedure involves comparing a rank-order goodness-of-fit

measure (Goodman-Kruskal y statistic) to the tabled percentiles

obtained-from-anrappreximate cumulativc permutation-distribution of

the measure. One of the rank orderings of the object pairs used in

defining y is derived immediately from the given similarity values

between the objects to be partitioned; the second rank ordering of

the object pairs is obtained from the partition hierarchy itself.

The tested hypothesis is simply that the given set of similarity

values have been assigned randomly to the object pairs.



3

APPROXIMATE EVALUATION TECHNIQUES FOR THE MAX HIERARCHICAL
CLUSTERING PROCEDURE

I. INTRODUCTION

In recent years a substantial number of applied researchers

have attempted to use the max hierarchical clustering scheme as a

general data analysis technique. Representative applications may

be found in Miller [11] , Anglin [1], Sokaland_Sneath 13

Johnson [8], and Hubert [5,6]. Variously called the max [8],

complete-link [13], furchest-neighbor [9], or hierarchical linkage

technique [10], this particular clustering procedure has been used

primarily as a descriptive device since there is no standard way

of statistically evaluating the adequacy of the obtained sequence

of partitions. Although the lack of an elegant methodology is

understandable given the combinatorial problems posed by the method,

approximate statistical procedures can be developed now in terms of

randomization and sampling theory until the more exact assessment

methods become available in the future.

As away of presenting a brief summary of what the max clustering

method does, suppose S is a set of n objects labeled oi,...,on and

{s..} is an n by n matrix containing similarity measures between

allobjectso.and oj.
1

For a rather weak initial requirement, it

is assumed that the elements of {sij } satisfy three constraints:

(i) Symmetry: sij
j

= s
i i

for all o' o.eS;

(ii) Positivity: sij > 0 for all o.,o.eS;
3

(iii)N.dlit-Y:sijmO for all o. = of .
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In the discussion below, similarity Lill be treated as a primitive

term; the interested reader can consult Sokal and Sneath [13], or

Jardine and Sibson [7] for a more thorough presentation.

The general aim of most hierarchical clustering techniques is to

produce an "optimal" sequence of partitions of the basic object set

S. More precisely, the commonly used clustering methods produce a

sequence-of partitions (e0,...re ) with the following properties:

(i) Zo is the trivial partition containing an object

class for each element in S;

(ii) en_i is the trivial partition containing a single

all-inclusive object class;

(iii) L is an immediate refinement of tk+1, 0 < k < n-2.

It is possible to characterize inductively one general paradigm

for the construction of a partition sequence that will include most

of the familiar clustering methods. Suppose the level k partition,

tie has been obtained and some real-valued function f defined on the

Cartesian product of the power set P(S) is evaluated for all pairs of

subsets defining Zk. That pair of subsets at level k minimizing

(or in some other way optimizing) the function f are then united to

form a new object class in the partition tk4.1. All remaining subsets

in -flare merely transferred to tiol.

As an illustration, the max method and an alternative min

method [8] are obtained by the following two interpretations of f:



if L
r'
L
r'

eP(S), then

fmax(LeLr') = max {siijoieLeojeLe};

fmin(Lr:Lr,) = min {siijoieLeojeLr,l.

The max method uses f and attempts to minimize subset diameters;
max

the min method uses fmin and minimizes a standard topological measure

of similarity between subsets.

Since bo 01 I iqucs depend only upon the

5

rank order of the similarity values, either of these two procedures

can be interpreted as a way of reranking the object pairs. Specifically,

the partition rank .,:or each object pair {oi,oj} is defined as the

level at which that pair first belongs to the same subset in a

partition. Symbolically, the partition rank for the pair {ovoi} can

be expressed as

'min {kl{oi,c belongs to the same subset in to.

By comparing the set of all partition ranks to the original similarity

ranks, the adequacy of the partition hierarchy in capturing the

structure underlying the matrix {s..} can be assessed. The measure

used in the following sections for quantifying this agreement is the

y statistic developed by Goodman and Kruskal [4]; although this

choice is somewhat arbitrary, the y statistic has a number of

desirable properties with regard to probabilistic interpretation in

the case of tied ranks that the more standard measures of rank

correlation do not possess.
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2. COMPARISON OF THE MIN AND THE MAX METHODS

Jardine and Sibson [7] provide a very strong axiomatic argument

for the use of the single-link (min) as opposed to the complete-link

(max) clustering procedure. Although their presentation is

mathematically elegant, a number of other researchers in the field,

notably the "Australian school" (see, for example [14]), have

criticized the min method on pragmatic grounds. As a way of introducing

a more extensive discussion of the max method per se, this section

will present one simple illustration to point out the differences

between the min and the max technique in terms of the y statistic.

In the example given in a later section an object set with

cardinality 9 was defined with 30 distinct similarity values assigned

to 36 object pairs. Since both the min and the max procedures

depend solely upon the rank order of the similarity values, this is

equivalent to assigning 30 distinct ranks to the 36 object pairs.

Using this fixed set of ranks, 1000 permutations were randomly

selected with replacement from the set of all possible permutations

of the object pairs. For each permutation, the min and the max

hierarchies were obtained along with the two corresponding y values.

It is obvious from the cumulative distribution of y given in

Table 1 that, on the average, the max procedure provides the more

adequate representation of the original similarity values. This

result holds true in general and is not an artifact of the cardinality

of the object set used in this example.

Table 1 here
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The accuracy of the distribution obtained with a sample of 1000

can be evaluated in a number of ways. First, by using tolerance

intervals we can say that with probability greater than .999, 99

percent of the complete permutation distribution is less than the

maximum observation (see Table S in [2]). Thus, if a y value greater

than .82 were obtained for a max hierarchy based upon similarity

values of the form used in constructing Table 1, there would be little

doubt as to the significance of the result. In particular, if the

null hypothesis is one of randomness in the assignment of similarity

values to the object pairs, then each permutation of the object pairs

should be equally likely to occur a priori. Consequently, if a y

value larger than .82 were calculated for the actual data using the

max hierarchy, this particular null hypothesis could be rejected at

a significance level close to .01.

A second way of assessing the accuracy of the sampling procedure

is in terms of Kolmogorov-Smirnov theory. Using a sample size of

1000 the following statement can be made conservatively since the

underlying distribution of y is discrete: with probability at least

.99, the maximum absolute deviation between the sample and the .

population cumulative distribution function is less than .05 (see [3],

p. 81). Thus, if the y value obtained for the real data lies at the

1 - a percentage point of the permutation distribution, the null

hypothesis of 'me...mess can be rejected conservatively at a

significance level of about a + .05.

Obviously, these measures of accuracy for the sampling procedure

could be improved 1.,,on further; for practical purposes, however,
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a sample size of 1000 was used in deriving the tables given in the

next section for n = 4 through 16. For larger values of n, a normal

approximation based upon an estimated mean and variance of the

permutation distribution appears to be adequate.
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3. TABLES FOR ASSESSING THE RESULTS FR()'I THE MAX

CLUSIERING PROCEDURE

Assuming that all similarity values are untied, Table 2 presents

selected percentage points of the sample cumulative distribution

functions for y for n = 4 through 16. As mentioned in the previous

section, these distributions are based upon a sample size of 1000

and should provide fairly reasonable approximations to the population

distribution functions.

Table 2 here

For small values of n the sample permutation distributions are

extremely peaked although they are almost perfectly symmetric. The

mean values and the variances decrease fairly regularly as n increases;

in fact, by merely extrapolating from th.s. means and variances

presented in Table 3, reasonable approximations to object sets larger

than 16 could be obtained. Instead of extrapolating, however, the

estimated means and variances for n= 17 through 2S were obtained

with samples of 200 permutations and may be used as parameters of an

approximating normal distribution.

Table 3 here

For moderate n, the normal distribution prOides a fairly

adequate approximation to the underlying sample permutation

distribution. For example, Table 4 illustrates the close correspondence

with the normal when n = 14. If n is small, however, the sample
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permutation distribution is considerably more peaked than the

corresponding normal distribution.

Table 4 here



There is a basic problem with the use of Table 2 when tied

similarity values are present, since in a strict sense the tabled

percentage points are then no longer appropriate. Although a

complete discussion of the effect of ties would be valuable,

the task seems impossible. We can, however, present

an example of what happens to the permutation distribution when ties

do occur.

As a way of discussing the problem of ties and presenting an

illustration of the use of Table 2, the data collected. by Shepard [12]

on the confusability of nine colors is ideal. The basic nine by

nine similarity matrix in Shepard's paper consisted of the conditional

probabilities of confusing one colored circle with eight other

possibilities, each of which had the same constant red hue but

different values for brightness and saturation. To make the

similarity measures symmetric, the values given in Table 5 were

obtained by adding the symmetric elements from Shepard's table and

subtracting the result from 1.00.

Tables 5 and 6 here

In addition to the similarity values between colors, Table S

also lists the partition ranks for the object pairs obtained from

the max partition hierarchy given in Table 6. The y value between

the partition ranks and the ordered similarity values turned out

to be .687 and apparently represents a substantial value. To test
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whether this y index is large enough to reject the null hypothesis of

a random ordering, 1000 permutations of the object pairs were obtained

using the similarity values illustrated in Table 5. The percentage

points for this cumulative distribution were given previously in

Table 1 and imply that the null hypothesis can be rejected at a

significance level of about .01, subject to the variat educed

by the sampling process itself.

Although obtaining a separate permutation distribution for each

similarity matrix is the most ideal alternative, this recommendation

defeats the overall usefulness of the percentage points given in

Table 2. Most of the time, however, the tabled values will be

sufficient to convince the researcher that he is not obtaining a

hierarchy based upon noise alone. This can be done merely by breaking

the ties in the original similarity values to obtain the largest y

value and then a second time to obtain the minimum value. These

bounds are on the y values that can be obtained from the partition

hierarchy assuming the similarity values are untied; but in addition,

because of the way in which y is defined it is also true that the

original y calculated for tied similarity values will lie between

these two bounds.

The upper and lower bounds on y are rather easy to obtain

without a complete evaluation of all the possible ways in which ties

may be resolved. Each individual set of tied similarity values can

be reordered to give a mini um y value with respect to its own

subset of partition ranks and then a second time to give a maximum

y value. When used together, these local operations construct
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overall orderings of the similarity values that lead to the global

upper and lower bounds for the y index.

Table 5 presents the orderings of the similarity values based

upor ''.wo local operations. The minimum y is .663 and the

maximum y is .688. Since the minimum bound is at a high percentage

point in Table 2, the null hypothesis still appears untenable.

In general, if the maximum bound is not sufficient to reject

randomness at a reasonable significance level, then a permutation

distribution based upon the unique form of the similarity values

will lead to the same conclusion (subject, of course, to the sampling

variability in the permutation distributions). Similarly, if the

minimum bound is sufficient to reject randomness, then the more

exact permutation distribution will imply rejection also. However,

if either of these two conditions does not occur, using the more

exact permutation distribution based upon the exact similarity values

is probably the only reasonable procedure to follow.
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Table 1. SAMPLE CUMULATIVE PERMUTATION DISTRIBUTIONS OF y FOR

NINE OBJECTS [N = 1000, 30 DISTINCT SIMILARITY VALUES]

Cumulative proportions

Mina Max

.02 .002 .000

.06 .006 .000

.10 .016 .000

.14 .032 .000

.18 .065 .003

.22 .122 .006

.26 .202 .021

.30 .314 .058

.34 .429 .120

.38 .570 .223

.42 .706 .350

.46 .801 .485

.50 .862 .654

.54 .919 .784

.58 .956 .882

.62 .985 .942

.66 .996 .980

.70 .998 .990

.74 1.000 .997

.78 1.000 .999

.80 1.000 .999

.82 1.000 1,000

aMean of .37; standard deviation of .12 .

b
Mean of .47; standard deviation of .10 .
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Table RELATIONSHIPS BETV;EEN THE NUMBER OF OBJECTS IN S AND Tire

SAMPLE MEAN AND STANDARD DEVIATION OF y

n
a

Mean y Standard Deviation y

4 .818 .1665

5 .706 .1606

6 .613 .1407

7 .553 .1222

8 .502 .1119

9 .457 .0990

1C .432 .0908

11 .400 .0828

12 .376 .0749

13' .353 .0724

14 .343 .0634

15 .324 .0635

16 .307 .0601

17 .299 .0554

18 .288 .0563

19 .277 .0530

20 .265 .0481

21 .254 .0457

22 .245 .0402

23 .235 .0461

24 .230 .0426

25 .229 .0387

aMean and standard deviation based upon samples of 1000
through n = 16; for larger n, sample sizes are 200.
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Table 4. NORMAL APPROXIMATION TO THE (SAMPLE) PEINUTATION DISTRIBUTION

OF y [n = 14]

Sample y Sample percentage Standardized y a

.195

.209

.218 /

.010

.020

.030

.195

.213

.224

.227
/

.040 .232

.236 .050 .239

.245 .060 .244

.249 .070 .249

.255/6 .080 .254

.259 .090 .259

.262 .100 .260

.289 .200 .289

.311 .300 .310

.326 .400 .327

.345 .500 .343

.361 .600 .359

.377 .700 .376

.395 .800 .396

.422 .900 .426

.425 .910 .428

.430 .920 .432

.433 .930 .436

.440 .940 .441

.444 .950 .447

.451 .960 .454

.460 .970 .462

.471 .980 .473

.488 .990 .490

a
Based upon the sample mean and standard deviation given in

Table 3 for n = 14..
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Table 6. PARTITION HIERARCHY COMET FROM SHEPARD'S DATA USING

THE MAX MEM f0D

Level Partition

1 {{1,2},{3},{4},{5};},{8},{9}}

2 {{1,2},{4,7},{3},{5},{6},{8},{9}}

3 {{1,2},{3,5},{4,7},{6},{8},{9}}

4 {{1,2},{3,5},{4,7},{6,8},{9})

5 {{l,2},{3,5},{6,8},{4,7,9}}

6 {{1,2,3,5},{6,8},{4,7,9}}

7 {{1,2,3,5,6,8},{4,7,9}}

II
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FOOTNOTES

Lawrence Hubert is Assistant Professor, Department of Educational

Psychology, University of Wisconsin, Madison, Wisconsin, 53706.

1To be consistent with Johnson [8], the term "similarity" is

, used rather than "dissimilarity."
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